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Abstract
Patients with many types of malignancy commonly harbor quiescent disseminated tumor cells in bone marrow.
These cells frequently resist chemotherapy and may persist for years before proliferating as recurrent metastases.
To test for compounds that eliminate quiescent cancer cells, we established a new 384-well 3D spheroid model in
which small numbers of cancer cells reversibly arrest in G1/G0 phase of the cell cycle when cultured with bone
marrow stromal cells. Using dual-color bioluminescence imaging to selectively quantify viability of cancer and
stromal cells in the same spheroid, we identified single compounds and combination treatments that preferentially
eliminated quiescent breast cancer cells but not stromal cells. A treatment combination effective against
malignant cells in spheroids also eliminated breast cancer cells from bone marrow in a mouse xenograft model.
This research establishes a novel screening platform for therapies that selectively target quiescent tumor cells,
facilitating identification of new drugs to prevent recurrent cancer.
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Introduction
At time of diagnosis, up to 60% of breast cancer patients harbor
disseminated tumor cells (DTC) in bone marrow in the absence of
overt metastases [1].Histology typically shows DTC as single,
non-proliferating cells [2]. DTC may remain in a growth-arrested,
viable state for years or decades before resuming proliferation,
producing late onset metastases after years of apparent disease-free
survival [3]. Cancer cells in bone marrow also may circulate to other
sites to produce additional metastases [4]. Presence of DTC in bone
marrow correlates with up to three-fold higher risk of recurrent,
clinically detectable breast cancer metastasis [1]. Occult cancer cells in
bone marrow also confer poor prognosis for patients with other
malignancies including melanoma, lung, and prostate, emphasizing
that DTC represent a significant threat for disease progression across
multiple cancers [5–7].
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Mesenchymal stromal cells (MSC) critically regulate biology and
drug resistance of DTC in bone marrow. Breast cancer cells localize
adjacent to MSC, potentially displacing hematopoietic stem cells
from protective bone marrow niches formed by MSC [8,9]. MSC
promote quiescence of DTC in bone marrow, contributing to
resistance of cancer cells to chemotherapy drugs that predominantly
target proliferating cells [8,10]. Ten to 15% of patients with breast
cancer continue to have detectable malignant cells in bone marrow
even after therapy with persistent DTC correlating with elevated risk
of recurrent disease and death [11]. Cancer chemotherapy damages
MSC, decreasing proliferative potential of these cells and secretion of
molecules that support hematopoietic stem cells [12]. To reduce
breast cancer recurrences while minimizing acute and chronic
toxicities, there is an unmet need to discover therapies that selectively
eliminate quiescent DTC with minimal damage to non-proliferating
bone marrow stromal cells.

Identification of treatments that selectively eliminate cancer cells
from bone marrow is limited by the lack of facile, high throughput
models that recreate quiescence of cancer cells and quantify toxicity to
malignant and stromal cells. Prior studies have tested for compounds
that overcome stromal-mediated drug resistance in two-dimensional
co-cultures of cancer and stromal cells or cancer cells with
conditioned medium [13,14]. While simple to implement, two-
dimensional assays minimize key aspects of DTC in bone marrow,
including quiescence, intercellular contacts, hypoxia, and mass
transport limitations of drugs [15–17]. Marlow et al developed a
three-dimensional co-culture system in which bone marrow stromal
cells supported quiescence of breast cancer cells, but the assay format
precludes large-scale screening of compounds [18]. None of these
studies quantified toxicity of compounds to stromal cells in the same
culture to select against compounds generally toxic to all cells.

To enable testing for single or combination treatments that
selectively eliminate quiescent cancer cells from bone marrow, we
established a 384-well spheroid co-culture model in which bone
marrow MSC support viable, quiescent breast cancer cells. We
implemented a dual-color click beetle luciferase assay to selectively
quantify relative numbers of viable cancer and stromal cells in the
same spheroid. Using this imaging method, we identified combina-
tions of compounds that preferentially eliminated quiescent breast
cancer cells from spheroids with minimal toxicity to quiescent MSC.
A therapy identified in our spheroid model effectively eliminated
breast cancer cells from bone marrow in mice, linking this in vitro
technology to efficacy in vivo.

Materials and Methods

Reagents
We purchased all cell culture supplies from Life Technologies

(Carlsbad, CA) unless otherwise stated. We obtained drugs,
compounds, and hormone supplements from the following sources:
AG-490, PD0325901, CP724714, MK-2206 2HCl, MK-8669,
GDC-0941, BazedoxifeneHCl, Trametinib (GSK112021), and
Fulvestrant from SelleckChem (Houston, TX); AMD3100 from
Tocris Bioscience (Bristol, UK); SB-431542 from Cayman Chemical
(Ann Arbor, MI), 4-hydroxytamoxifen and β-estradiol from Sigma
Aldrich (St. Louis, MO); and cisplatin (NDC-0703-5748-11),
paclitaxel (NDC-55390-304-50), and doxorubicin (NDC-0069-
3030-20) from the University of Michigan Hospital Pharmacy as
clinical formulations. We prepared 10 mM stocks of estrogen in
ethanol, while we used other compounds in formulations supplied
or specified by manufacturers. D-Luciferin was from Promega
(Madison, WI).

Cell Lines and Reporters
We maintained all cells in 10% FBS (HyClone, ThermoScientific,

Waltham, MA) DMEM (#11995, Life Technologies) supplemented
with penicillin, streptomycin, and glutamine (Life Technologies). We
passaged cells every 2 to 4 days by trypsinizing and resuspending. We
obtained immortalized human bone marrow mesenchymal stromal
cell line HS-5 and breast cancer cell lines MDA-MB-231 and T47D
from the American Type Culture Collection. We used PCR to
amplify click beetle green CBG99 and CBRed from plasmids
pCBR-Basic and pCBG99-Basic, respectively (Promega). PCR
primers for CBG99 were XbaI CBG99 forward 5′-ATTATCTA
GAACCGCCATGGTGAAGCGTGAGAAAAATGTC-3′ and
XbaI CBG99 reverse 5′- ATTATCTAGACTAACCGCCGGCC
TTCTCCAACAATTG-3′. Primers for CBRed were XbaI CBR
forward 5′-ATTATCTAGAACCGCCATGGTAAAGCGTGA
GAAAAATGTC-3′ and XbaI CBR reverse 5′- ATTATCTAGAT
TACTAACCGCCGGCCTTCACCAAC-3′. We digested these
PCR products with XbaIfor ligation to the XbaI site of lentiviral
vector FUW (gift of D. Baltimore) [19]. Plasmids Fucci C
mKO2-hCdt1(30/120)/pCSII-EF-MCS and Fucci D mAcGFP-
hGeminin(1/110)/pCSII-EF-MCS were a gift of A. Miyawaki [20].
We generated stable reporter cell lines by lentiviral transduction as
described [21].

Spheroid Co-Culture Model
We formed spheroids in 384-well low volume, non-adhesive,

round bottom plates (#3676; Corning Inc., Corning, NY), which we
sterilized with UV radiation. To form 200 to 300 μm diameter
spheroids, we seeded 1% MDA-MB-231 or 5% T47D cells
expressing CBGreen and fluorescence ubiquination-based cell cycle
indicators (FUCCI) with HS5 cells expressing CBRed for a total of
3 × 103 cells per well in spheroid medium: phenol red free DMEM
(#31053; Life Technologies) supplemented with 1% FBS (HyClone),
0.1 nM estrogen, penicillin/streptomycin/glutamine (Life Technolo-
gies), and pyruvate to match all but the serum content and phenol in
standard growth medium. The difference in percentage of cancer cells
is based on initial viability of cells after seeding spheroids and
brightness of CBGreen expression to optimize dual-color measure-
ments. For both spheroid maintenance and drug treatments, we
replaced spheroid media in each plate every other day for the duration
of an experiment by removing up to 20 μl from each well and
replacing it with 20 μl fresh spheroid medium. For long-term culture,
we filled the outside wells around the periphery of the plate with
medium only to minimize evaporation within experimental wells. We
replicated each experimental condition in four to seven wells and
performed experiments at least twice. We distributed controls both
on the interior and exterior of each plate to account for any effects of
position on bioluminescence signal.

We highlight the simplicity and flexibility of using existing,
relatively low-cost, low-binding 384 round bottom plates to form
co-culture spheroids and induce cancer cell quiescence. Facile,
long-term culture is necessary for following quiescent cells, as changes
in growth or death are prolonged. While the plates we selected were
developed for chemical assays, the low-binding surface and optimal
geometry facilitate formation of a single, uniform spheroid per well.
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Spheroids in this format form rapidly (b24 hours); are stable for at
least 16 days; and are amenable to high throughput manipulation
and/or analyses (bioluminescence, fluorescence, colorimetric, etc).
Historically, multiple spheroids have been formed in lower-
throughput, non-adherent 96-well plates. However, the larger
volumes of these wells and movement of spheroids within a well
has limited the ease of exchanging medium, spheroid collection, and
imaging. With our system, spheroids are geometrically restricted to
the bottom and center of the small wells, facilitating rapid, albeit
incomplete media exchange.
To test effects of single compounds or combinations, we formed

spheroids for two days in spheroid medium before beginning
treatments with compounds at indicated concentrations. To establish
baseline bioluminescence before treatment, we quantified biolumi-
nescence in two to four columns of each plate before adding
compounds to remaining wells. We exchanged medium with fresh
compounds diluted in spheroid medium every other day. For
treatment and recovery experiments, we imaged bioluminescence
after eight days of treatment and then exchanged 20 μl of media three
times, which removes N99% of luciferin and compounds from each
well. For recovery we continued exchange with fresh medium every
other day for a total of six days.

Click Beetle Red and Green Bioluminescence Imaging
We captured all bioluminescence images with an IVIS Lumina

Series III (Perkin Elmer, Waltham, MA) and analyzed data with
Living Image 4.3.1. We separated signals from click beetle red and
green luciferase as discussed previously [22]. Briefly, we replaced 5 μl
of each 384 well with a 1:4 dilution of 150 μg/ml luciferin, resulting
in 1:20 final dilution of luciferin. After incubating at 37°C for 5
minutes, we captured a 3-to 5-minute exposure with medium
binning and either 520 nm or 680 nm band pass filters. For imaging
in 2D standard culture conditions we used 1:100 final dilution
of luciferin.

Quiescence, Dissociation, and Colony Outgrowth from Spheroids
To test reversibility of cancer cell quiescence, we formed spheroids

of MDA-MB-231 or T47D cells as described above. After 2 and 10
days in spheroid culture, we performed two-photon fluorescence
microscopy to determine cell cycle status of cancer cells based on
FUCCI reporters (orange, G1; green, S/G2/M). On the same days,
we dissociated parallel spheroids for colony outgrowth in optimal 2D
growth conditions. To dissociate spheroids, we collected spheroids
from a 384-well plate; washed in excess PBS; aspirated PBS;
trypsinized briefly; and plated dissociated cells in six-well plates
containing full growth medium. After 1, 4, and 8 days in adherent
culture, we imaged FUCCI status of colonies using epifluorescence
and cell proliferation with bioluminescence. For bioluminescence
in 2D cultures, we used 1:100 final dilution of 150 μg/ml luciferin.
We note that faster outgrowth of cancer cells in 2D cultures
required discounting the CBRed image due to substantial CBGreen
signal. After bioluminescence imaging, we replaced medium to
remove luciferin.

Cytotoxicity Assays in Two-Dimensional Culture
We seeded a total of 1 × 104 cells per well in 96-well plates, using

4% MDA-MB-231 CBGreen cells co-cultured with HS5 cells. One
day after plating cells, we treated cells with increasing concentrations
of doxorubicin, cisplatin, or paclitaxel as listed in figure legends, while
control wells received vehicle only (n = 4-6 per condition). We
quantified cytotoxicity based on bioluminescence.

AnimalModels of BoneMarrowMetastasis and Drug Treatment
All animal procedures were approved by the University of

Michigan Committee for the Use and Care of Animals. To model
bone marrow metastases in mice, we delivered 1 × 105

MDA-MB-231 cells expressing CBGreen and FUCCI in 100 μl
0.9% NaCl solution via intracardiac injection into the left ventricle of
5- to 9-week-old female NSG mice [23]. Three days after injection,
we randomly assigned mice to treatment with a single dose of
doxorubicin (5 mg/kg i.p.), five daily doses of trametinib (1 mg/kg by
oral gavage), combined treatment with each drug, or vehicle controls.
We formulated trametinib for gavage as described [24]. We used only
a single dose of doxorubicin because multiple doses of this drug are
toxic to NSG mice. One week after completing the last dose of
trametinib or vehicle, we euthanized mice; recovered lower extremity
bone marrow; and plated dissociated bone marrow in standard cell
culture medium to allow growth of viable MDA-MB-231 breast
cancer cells by bioluminescence after one week [23]. For flow
cytometry analysis of bone marrow, we used PBS to flush bone
marrow from the femur and tibia as described [25]. We analyzed 5 ×
105 events per bone marrow sample using a BD FACS Aria II (Becton
Dickenson, Franklin Lakes, NJ).

Fluorescence Microscopy
We captured all microscopic images of spheroids with an upright

Olympus FVE1000 MPE using a 25× NIR corrected objective
(XLPLN25XWMP, NA=1.05, Olympus, Tokyo, Japan). To facili-
tate semi-high-throughput upright immersion microscopy, we
transferred spheroids from 384-well plates to low aspect ratio wells
as we described previously [26]. For images of hCDT-mKO and
hGeminin-AcGFP (FUCCI) cells, we used 920 nm excitation and
collected emitted light in green (495-540 nm) and red (575-630 nm)
channels. To limit signal attenuation throughout 150 μm stacks (5 μm
step size), we used the Olympus Bright-Z function to adjust laser
transmission to the sample and detector gain to maximize signal per
slice. We used the same acquisition parameters for all spheroids
compared within a single experiment. For epifluorescence images, we
used an Olympus IX70 microscope with a 10× objective, imaging red
and green channels.

Data Processing, Plotting, and Statistics
We used Microsoft Excel (Seattle, WA) to process bioluminescence

photon flux data before plotting data using GraphPad Prism (San
Diego, CA). We used GraphPad Prism for statistics and estimation of
EC50 values using four-parameter non-linear regression without
weighting on log-transformed concentration data. We generated
surface plots with the surf function in MATLAB. All graphs display
mean values ± SEM unless stated otherwise. We normalized curves to
photon flux measurements obtained 2 and 10 days post seeding for
growth and cytotoxicity assays in spheroids, respectively. We
propagated errors along each point for normalization. We calculated
well-by-well selectivity of compounds by taking the log2 transform of
CBRed flux (R) divided by CBGreen flux (G). The log2
transformation normalized the distribution and facilitates visualiza-
tion of results. We then subtracted the log2 ratio of the untreated
control, which adjusted for differences in baseline CBRed and
CBGreen brightness. Negative selectivity corresponded to either
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preferential growth of the CBGreen cancer cells or death of the
CBRed HS5 cells.

To quantify the fraction of cells in S/G2/M cells using the FUCCI
reporter, a person blinded to experimental conditions manually
counted the number of orange or green cells using images with
pseudo-colored overlay. For 2D cultures, we quantified a single slice
for multiple view fields. For spheroids, we quantified a slice every 15
μm through a 150 μm volume. We calculated the ratio of cells in G1/
0 by dividing the number of green (G) cells divided by total orange
and green (R+G) for each image. We noted very few cells with both
green and orange, and we discounted these cells from calculations.
For statistical comparisons of 2D monoculture and 3D co-culture
FUCCI ratios we applied the t test in GraphPad Prism.

Results

Co-Culture Spheroid Model of Breast Cancer Quiescence in
Bone Marrow

We generated spheroids combining both breast cancer cells (1–5%
of total cells) and HS5 bone marrow MSC (HS5) in non-adherent
384-well plates, modeling small numbers of DTC in bone marrow
while still providing sufficient imaging signal from cancer cells. We
used an established reporter system for the cell cycle (FUCCI) that
marks cells in G1/G0 and S/G2/M with red and green fluorescent
Figure 1. Bone marrow spheroids induce reversible quiescence of b
breast cancer cells in 2D culture or HS5 spheroids (3D z-stack) based
G2/M phases based on red or green fluorescence, respectively. Grap
decreases for cancer cells in HS5 spheroids (n = 9-13 spheroids poole
3D for both cell types). (B) Representative images of MDA-MB-231 a
demarcate 100 μm. (C) MDA-MB-231 or T47D cancer cells were cultu
then returned to adherent 2D growth conditions for 8 days. Data are
over 8 days in adherent 2D co-culture (n = 6 measurements poole
measurement). (D) Representative FUCCI images of outgrowth coloni
μm and 50 μm for the MDA-MB-231 and T47D colonies, respectively
proteins, respectively [20]. Relative to proliferating cells in
two-dimensional culture, both MDA-MB-231 and T47D breast
cancer cells in spheroids arrested in G1/G0 phase of the cell cycle
within 48 hours as measured by significantly lower fractions of cells in
S/G2/M(P b .05) (Figure 1, A and B).Bioluminescence from click
beetle green luciferase expressed in cancer cells confirmed minimal
proliferation over 10 days in spheroid culture with doubling times of
9.1 and 10.2 days for MDA-MB-231 and T47D cells, which are ≈9
and 3 times longer than two-dimensional culture, respectively.
Fluorescence and bioluminescence imaging showed normal prolifer-
ation of cancer cells when returned to standard two-dimensional
culture even in the presence of HS5 cells, showing viability and
reversible quiescence of tumor cells in spheroids (Figure 1, C and D).
HS5 cells were essential for viability of breast cancer cells in spheroids
because the same number of cancer cells died rapidly when placed
alone into suspension culture (data not shown). These data establish a
straightforward method to rapidly generate large numbers of
three-dimensional co-cultures with reversibly quiescent breast cancer
cells and bone marrow MSC.

Dual-Color Click Beetle Luciferase Imaging of Breast Cancer
and MSC

To independently monitor viability of cancer cells and MSC in the
same spheroid, we implemented dual-color bioluminescence imaging
reast cancer cells. (A) Cell cycle status of MDA-MB-231 or T47D
on genetically-encoded FUCCI, which define cells in G1/G0 and S/
h shows mean values + SEM for fraction of cells in S/G2/M, which
d from two independent setups; t test, * P b .0001 between 2D and
nd T47D FUCCI cells in 2D and 3D culture, respectively. Scale bars
red in HS5 spheroids for 2 or 10 days, dissociated as a co-culture,
plotted as mean values + SEM for fold change in bioluminescence
d from two independent setups, four spheroids dissociated per
es from cancer cells described in panel C. Scale bars demarcate 200
.
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with green (CBGreen) and red (CBRed) spectral variants of click
beetle luciferase [27] (Figure 2). Similar to firefly luciferase, click
beetle green and red luciferases are ATP-dependent enzymes that
sensitively quantify relative numbers of viable cells. To characterize
our ability to independently measure each enzyme without spectral
deconvolution, we generated spheroids with increasing percentages of
MDA-MB-231 or HS5 cells expressing CBGreen or CBRed,
respectively. Signal increased linearly in both the 520 nm (green)
and 680 nm (red) channels with increasing percentages of CBGreen
cancer cells (Figure 2, A and B). Conversely, increasing the fraction
of CBRed HS5 cells produced corresponding increases in red signal
with negligible signal in the green channel (Figure 2C ). CBGreen
produces an order of magnitude less signal than CBRed when cancer
cells are seeded at 1% to 10% of total cells in a spheroid (Figure 2B).
These results establish that CBRed signal from HS5 cells does not
Figure 2. Validation of dual-color click beetle luciferase imaging for
selective monitoring of cancer cells in bone marrow co-culture
spheroids. (A) Representative bioluminescence spectra of
MDA-MB-231 or HS5 cells expressing click beetle red or green
luciferases, respectively. The spectra are normalized to their
maxima for viewing purposes. The green and red boxes designate
the band-pass filters used for separating cancer (CBGreen) and
stromal (CBRed) components, respectively. Each data point
represents mean ± SEM (n = 4 per point). (B) We plated an
increasing percentage of MDA-MB-231 CBGreen cells with
non-bioluminescent HS5 cells and quantified bioluminescence in
green (520 nm) and red (680 nm) channels. Graphs in B and C show
mean values with error bars smaller than the symbol when not
evident (n = 20 per point). The red dashed line shows the typical
photon flux from CBRed HS5 cells when these cells are present at
proportions (95% to 99% of cells) used in our spheroids. (C)
Increasing the percentage of HS5 CBRed cells with unmarked HS5
cells increases signal in the red channel only. The green dotted line
shows the approximate average CBGreen photon flux when cancer
cells are present at typical proportions (1% to5%of cells). At ratios of
cancer to stromal cells used in bone marrow spheroids, biolumines-
cence from stromal cells is undetectable in the green channel, and
cancer cells produce very minimal signal in the red channel.
affect detection of CBGreen from cancer cells, and CBGreen signal
from cancer cells contributes substantially to the red channel only
when spheroids contain greater than 10% cancer cells. By
maintaining 1% to 5% cancer cells in spheroids, we can quantify
linear changes in cancer cell bioluminescence without affecting signal
detected from MSC.

Limited Selectivity of Many Compounds Against Quiescent
Cancer Cells

We initially tested standard chemotherapy drugs used in breast
cancer for cytotoxicity against quiescent breast cancer cells in bone
marrow spheroids, using bioluminescence from CBGreen and
CBRed to quantify effects on cancer and HS5 cells, respectively.
We plotted the untreated- and background-normalized dose-response
curves for bioluminescence from both cancer and HS5 cells (Figure 3,
A–C ). To quantify selectivity of a drug for cancer cells at defined
concentrations, we calculated the log-2-scale ratio of stromal to cancer
bioluminescence. Log-2 normalization is typical for bioinformatics
measures that compare to internal references [28].Selectivity is zero
for untreated spheroids as both dose-response curves start at one.
Bioluminescence b1% of starting values produces high variability as
the signal is close to background of the imaging system, so we
removed these selectivity points from graphs.

Cisplatin and paclitaxel produced higher EC50 values forquiescent
MDA-MB-231 cells than HS5 cells in spheroids, resulting in negative
selectivity and greater toxicity of these drugs to HS5 cells (Figure 3,
A–C; EC50 values listed in Table S1). Doxorubicin had minimally
positive selectivity for MDA-MB-231 cells in spheroids, potentially
because this drug has multiple mechanisms of action unlike the
predominantly cell-cycle dependent cytotoxicity of cisplatin and
paclitaxel (Figure 3B). EC50 values for all drugs against cancer cells
were notably higher in spheroids than two-dimensional co-cultures of
proliferating breast cancer cells and HS5 cells, highlighting protective
effects of quiescence against standard chemotherapy drugs (Table S1).
We observed similar effects of these drugs on quiescent T47D cells in
spheroids (Figure S1, A–C). We note that HS5 cells also remain
quiescent in spheroids, so drug sensitivities are not caused by
differences in proliferation between cancer and stromal cells.

We then tested molecularly-targeted compounds under develop-
ment or clinically-approved for cancer therapy, including inhibitors of
PI3-kinase, mTOR, TGF-β, Her2, and CXCR4 (Tables S2-5).
Estrogen receptor (ER) inhibitors did not affect viability of quiescent
ER+ T47D cells in bone marrow spheroids, similar to persistence of
ER+ breast cancer cells in patients treated with these drugs. Several
compounds non-selectively targeted both cancer cells and stromal
cells or preferentially eliminated stromal cells (Figure S2, S3; Tables S3,
S4). MEK inhibitor PD0325901 showed strong selectivity for
quiescent MDA-MB-231 cells, likely because these cells constitutively
activate this kinase downstream of mutant KRas (Figure 3D) [29].
Collectively, these results highlight the utility of our dual color imaging
strategy to differentially measure effects of compounds on quiescent
cancer versus stromal cells.

Combination Treatments Increase Selectivity In Vitro
To improve selective elimination of quiescent MDA-MB-231 cells,

we incubated cells with increasing concentrations of PD0325901 and
doxorubicin alone or in combination for 8 days. After removing
compounds, we cultured spheroids for an additional 6 days to identify
delayed effects on cell viability, similar to patients treated with



Figure 3. Responses of breast cancer and bone marrow stromal cells to single agent treatment in spheroids. (A-D) We treated spheroid
co-cultures of 1%MDA-MB-231 cells andHS5 bonemarrow stromal cells with listed concentrations of cisplatin (A), doxorubicin (B), paclitaxel (C),
or PD0325901 (D) for eight days and then quantified CBGreen and CBRed bioluminescence, respectively (n = 7 spheroids per condition). Graphs
display mean values + SEM for fold change in bioluminescence relative to vehicle control for each cell type. To directly demonstrate selective
elimination of cancer cells, we plotted the log2 ratio of stromal to cancer bioluminescence (black line) with positive values showing preferential
toxicity to cancer cells relative to HS5 stromal cells. Negative selectivity indicates that the counterpart CBRed stromal dose-response would be
left-shifted relative to thedepictedCBGreencurve. Thedashed line showsnoselectivity (equal effects of a compoundoncancer andstromal cells).
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intermittent cycles of chemotherapy. We observed maximum
selectivity of ~4.0 for 100 nM PD0325901 alone after eight days
of treatment (Figure 4A). Selectivity for intermediate concentrations
Figure 4. Enhanced selectivity of combinatorial treatments on cance
recovery. Surface plots show cancer cell bioluminescence (CBGreen)
days of recovery without compounds (B) for MDA-MB-231 cells tre
pseudocolor scale with red and blue depicting highest and lowest se
respectively. The dotted purple and red lines in (A) represent the dox
of PD0325901 decreased after six days of recovery, potentially due to
cytostatic rather than cytotoxic effects of this compound (Figure 4B).
Conversely, selectivity elimination of MDA-MB-231 cells with
r versus stromal cells in bone marrow spheroids after dosing and
normalized to control after 8 days of treatment (A) and again after 6
ated with PD0325901 and doxorubicin. Selectivity is plotted on a
lectivity of treatments for eliminating cancer versus stromal cells,
orubicin only and PD0325901 only curves, respectively.



Figure 5. Combination treatment with doxorubicin and trametinib
eliminates breast cancer cells from bone marrow. (A-D) We treated
mice with experimental MDA-MB-231 bone marrow metastases
with (A) vehicle control, (B), doxorubicin, (C) trametinib, or (D) both
doxorubicin and trametinib. We recovered lower extremity bone
marrow from mice and cultured cells ex vivo for seven days before
quantifying bioluminescence from breast cancer cells. Plates show
representative images from each treatment group. (E) Graph
shows photon flux values for individual cultures from each
treatment group. The fraction below each dataset represents the
fraction of lower extremities from which we detected cancer cells
above background (dotted line at 105). * denotes P b .05 by t test
for difference between vehicle and other conditions.
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doxorubicin alone increased after six days of recovery (Figure 4B).
Combination treatment with 100 nM PD0325901 and 1 μM
doxorubicin followed by six days of recovery produced peak selective
toxicity to MDA-MB-231 cells (Figure 4B). Compensatory activation
of MEK confers resistance to doxorubicin in several different cancers
that we overcome by adding PD0325901 [30–32].
We also targeted Jak2 signaling in MDA-MB-231 cells since HS5

cells constitutively secrete IL6, a known activator of Jak2-Stat3
signaling in breast cancer progression [33–35]. While treatment with
the Jak2 inhibitor AG490 produced minimal selectivity for cancer
cells, we observed highest post-recovery selectivity for AG490
combined with doxorubicin (Figure S4). These results highlight
how our system can identify combinations of compounds with greater
toxicity to quiescent cancer versus stromal cells over extended periods
of treatment and post-treatment recovery.

Bone Marrow Spheroid Model Predicts Combination Therapy
Effective Against Bone Marrow Metastases
We tested combination therapy with MEK inhibition and

doxorubicin on experimental bone marrow metastases with
MDA-MB-231 cells. In a preliminary experiment with MDA-MB-
231 cells expressing the FUCCI cell cycle reporter, flow cytometry of
cancer cells recovered from lower extremity bone marrow of mice
showed ~90% of MDA-MB-231 cells in G1/G0 of the cell cycle,
similar to spheroids with HS5 cells. To replicate limited numbers of
disseminated cancer cells in bone marrow, we injected
MDA-MB-231 cells intracardiac into the left ventricle and began
treatment three days later on mice assigned randomly to one of four
groups: 1) single dose of doxorubicin; 2) five doses of trametinib
(a clinically approved MEK inhibitor that closely replicates kinetics
and functions of PD0325901); 3) single dose of doxorubicin and five
doses of trametinib; or 4) vehicle only. After completing treatment
and an additional week without treatment, we recovered and
dissociated bone marrow from lower extremities and allowed
outgrowth of cancer cells in standard two-dimensional cell culture.
While we detected bioluminescent cancer cells from 7/10 cultures
from vehicle control mice, treatment with doxorubicin or trametinib
alone decreased numbers of positive mice to 3/8 and 5/11,
respectively (Figure 5, A–C, and E ). Notably, combination treatment
with doxorubicin and trametinib completely eliminated outgrowth of
MDA-MB-231 cells in vitro with bone marrow from 0/8 lower
extremities positive for cancer cells (Figure 5, D–E ) (P b .05).These
results link efficacy of treatment combinations in our spheroid model
to in vivo efficacy against cancer cells in bone marrow.

Discussion
Selectively eliminating quiescent cancer cells from bone marrow and
other potential sites of dormant tumor cells remains a major challenge
in preventing recurrent cancer. Chemotherapeutic drugs for cancer
typically interrupt functions of proliferating cells, such as mitosis,
DNA replication, and mitogenic signaling that may be dispensable for
survival of quiescent cancer cells. Drugs that effectively target
quiescent cancer cells also may damage quiescent stromal cells
essential for normal cellular environments, such as bone marrow
MSC that establish protective niches for hematopoietic stem cells.
Toxicity to normal tissues frequently limits drug dosage and/or
frequency, impairing the ability to eliminate cancer cells. To
successfully target dormant cancer cells in patients, there is a need
for experimental models and techniques that establish quiescence of
cancer cells and enable testing for compounds that kill malignant cells
with minimal toxicity to stromal cells.

We meet this need with a novel combination of 3D co-culture
spheroids and multi-modal imaging, establishing the first high
throughput model for treatments that selectively eliminate quiescent
cancer cells from bone marrow. Fluorescence imaging shows that
≈90% of MDA-MB-231 cells arrest in G1/G0 of the cell cycle in
spheroids with bone marrow stromal cells, comparable to the cell
cycle distribution of these cancer cells recovered from mouse bone
marrow. While recognizing that co-culture spheroids of breast cancer
and bone marrow stromal cells do not fully capture the cellular profile
of bone marrow, this result shows our experimental system mimics
the in vivo quiescent cell cycle profile of cancer cells in bone marrow.
We optimized dual-color bioluminescence imaging parameters to
independently quantify toxicity of compounds to breast cancer and
bone marrow stromal cells in the same 384-well plate assay. The high
sensitivity of bioluminescence imaging allowed us to readily measure
very low numbers of cancer cells in spheroids (30–150 cancer cells per
spheroid, or 1–5% of total cells). By forming spheroids with few
cancer cells, we modeled rare numbers of quiescent cancer cells in
bone marrow of patients. Measuring effects of treatments against both
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cancer and normal bone marrow cells in the same spheroid eliminates
the need for additional screening to avoid compounds that non-
specifically kill all quiescent cells, saving time and resources. We expect
this drug testing strategy will help investigators identify new compounds
and drug combinations effective against dormant tumor cells with
reduced toxicity to non- or slowly dividing cells in normal tissues.

To demonstrate applications of this bone marrow spheroid model
for drug testing, we quantified effects of standard chemotherapeutic
drugs used in breast cancer and representative molecularly-targeted
agents under development or approved recently for patients.
Although few tested compounds selectively eliminated cancer cells,
we found combinations that improved elimination of MDA-MB-231
cells after sequential dosing and recovery. By measuring selectivity of
responses in spheroids, we found that a MEK inhibitor plus
doxorubicin enhanced elimination of breast cancer versus stromal
cells and that an inhibitor of Jak2-Stat3 only selectively eliminated
cancer cells in combination with doxorubicin. We tested the
combination of MEK inhibitor and doxorubicin for effects against
experimental bone marrow metastases in mice. Unlike single agent
therapy, combined treatment with a MEK inhibitor and doxorubicin
completely eliminated MDA-MB-231 cells from bone marrow.
While additional validation is needed, this proof-of-concept
experiment suggest that results from our new drug testing platform
correlate with efficacy against cancer cells in mouse bone marrow.

We focused on modeling disseminated breast cancer cells in bone
marrow because this is a recognized, clinically relevant site of tumor
dormancy [3,36]. The model and imaging methods readily can be
applied to other cancers with tumor dormancy, such as prostate and
melanoma, and other anatomic sites that may harbor disseminated
tumor cells [37,38]. Spheroids also can be generated with multiple
types of stromal cells to reproduce more complex tumor environ-
ments and analyze toxicity of compounds to other types of stromal
cells [15,39]. While established cell lines facilitate screening of
multiple compounds to identify the best agents or combinations,
patient-derived cancer cells could be integrated into co-culture
spheroids for personalized drug testing, capitalizing on methods such
as viral transduction to introduce imaging reporters [40]. Although
click beetle bioluminescence only provides two-component resolu-
tion, this strategy may be multiplexed with other luciferase enzymes
(e.g. NanoLuc or Gaussia luciferase) and/or fluorescence readouts to
measure additional cell populations or specific drug targets [41–43].

Our high throughput, simple, long-term, 3D model of cancer cell
quiescence is a significant advance over previous 2D systems and
existing, more complex 3D models. The system facilitates mainte-
nance of 384 well format cultures for at least 16 days, which enables
extended dosing and recovery protocols to identify optimal drugs and
drug combinations that selectively eliminate quiescent cancer cells.
These 3D culture and imaging strategies are amenable to high
throughput screening and co-culture models of other cancers and sites
of tumor dormancy. Incorporating screening against quiescent cancer
cells in a bone marrow environment early in drug development will
increase the likelihood of finding therapies independent of cell
division and with lower toxicity to normal tissues. We expect our drug
testing platform will help advance more effective, less toxic therapies
to clinical trials and ultimately clinical oncology.
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