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Microfluidic systems: A new toolbox for pluripotent stem cells
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Conventional culture systems are often limited in their ability to regulate the growth and differen-
tiation of pluripotent stem cells. Microfluidic systems can overcome some of these limitations by
providing defined growth conditions with user-controlled spatiotemporal cues. Microfluidic sys-
tems allow researchers to modulate pluripotent stem cell renewal and differentiation through bio-
chemical and mechanical stimulation, as well as through microscale patterning and organization
of cells and extracellular materials. Essentially, microfluidic tools are reducing the gap between
in vitro cell culture environments and the complex and dynamic features of the in vivo stem cell
niche. These microfluidic culture systems can also be integrated with microanalytical tools to
assess the health and molecular status of pluripotent stem cells. The ability to control biochemi-
cal and mechanical input to cells, as well as rapidly and efficiently analyze the biological output
from cells, will further our understanding of stem cells and help translate them into clinical use.
This review provides a comprehensive insignt into the implications of microfluidics on pluripotent
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stem cell research.
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1 Introduction
1.1 Stem cells then and now

The first pluripotent stem cells were isolated in 1981 from
mouse embryos, and were termed embryonic stem cells
(ESCs) to distinguish them from pluripotent cells obtained
from teratocarcinomas [1]. Since this discovery, advances
in our understanding of stem cells have led to a variety of
proposed cell-based strategies for improving regenerative
medicine, treating degenerative diseases, and discover-
ing novel drug targets. These strategies take advantage of
the two defining properties of pluripotent stem cells, their
abilities to self-renew indefinitely and to differentiate into
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Abbreviations: 2D, two-dimensional; 3D, three-dimensional; ATPS, aque-
ous two-phase system; ECM, extracellular matrix; EB, embryoid body;
GMP, good manufacturing practice; (h/m) ESC, (human/mouse) embryon-
ic stem cell; iPS, induced pluripotent stem
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specific cells from any one of the three germ lines upon
appropriate stimulation [1-3].

Early work characterized the cues that regulated
stem cell pluripotency and differentiation. ESCs required
a variety of factors to maintain their pluripotent status,
as they could only be expanded in vitro through the use
of feeder cells and conditioned medium [1, 4]. Further
characterization revealed that the key to maintaining po-
tency in mouse ESCs (mESCs) was the presence of spe-
cific growth factors, whereas differentiation to each
germ layer and respective downstream lineages required
entirely different sets of growth factors and external
stimuli [3].

In the process of characterizing mESCs, an efficient
set of tools for genetically engineering mouse models, cre-
ating feeder-cell culture systems, and directing cell differ-
entiation were established [5]. However, upon isolation of
the first human ESCs (hESCs), an opportunity was opened
to shift from basic research on pluripotent stem cells to
clinical research. As with mESCs, hESCs displayed dif-
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ferential responses that were dependent on biochemical
factors [6-8] as well as a variety of other stimuli. These
and other findings triggered a growth in the development
of devices for isolating, stimulating, collecting, and ana-
lyzing stem cells.

1.2 What does a device have to offer?

Traditional methods for culturing stem cells, such as two-
dimensional (2D) cultures on extracellular matrix (ECM)-
coated cultureware or on feeder-cell layers, or as three-di-
mensional (3D) embryoid bodies (EBs), are limited in their
ability to apply precise stimuli to individual cells or cell
populations. They are also difficult to adapt for high-
throughput biochemical or molecular analysis on subpop-
ulations of cells [9].

These limitations can be resolved by using microflu-
idics to control the cellular microenvironment [10-12].
Microfluidic systems are versatile and provide high spa-
tiotemporal resolution for patterning molecules and cells
(for reviews see [10-12]). Since ESCs and other types of
pluripotent stem cells display high sensitivity to external
stimuli, the high degree of control provided by microflu-
idics is useful for investigating their biology [13]. In the
past few years, several reviews have highlighted the prop-
erties, advantages, and future growth areas of microflu-
idic technologies in stem cell research [14, 15].

Our review does not focus on the fundamentals of
these fields, but rather encompasses more detailed and
specific work applied to pluripotent stem cells, in partic-
ular ESCs, cultured in microfluidic environments. In our
discussion, we touch upon microfluidic tool sets that have
not yet been applied to pluripotent stem cells, but have
the potential to provide useful control or analysis methods
for use with these cellular populations. This review is
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organized into several practical areas that microfluidics
and other microtechnology platforms are uniquely capa-
ble of addressing: (i) Controlled EB formation and co-cul-
ture geometry (Section 2); (ii) precise delivery of bio-
chemical and mechanical stimulation to stem cells to di-
rect their differentiation (Section 3); and (iii) acquisition of
biochemical data from single cells or small populations of
cells (Section 4) (Fig. 1). Although much of the discussion
is focused on ESCs, we also describe applications involv-
ing other pluripotent and multipotent stem cell types.

2 EBs and co-cultures

A variety of culture systems exist for maintaining stem
cells in their pluripotent state prior to differentiation.
These include 2D substrates where growing ESC colonies
are maintained with irradiated feeder cells [2], and 2D cul-
tures without feeder cells that use select ECM proteins or
polymer coatings and medium formulations to maintain
pluripotency [16, 17]. Maintaining pluripotency in con-
ventional macroscale methods is fairly standardized, al-
though robustly directing differentiation of pluripotent
stem cells has been more difficult. Traditional methods for
ESC differentiation include formation of 3D EBs [18, 19].
In EBs, ESCs differentiate spontaneously; however, differ-
entiation can be directed down desired lineages by expo-
sure to appropriate developmental cues. These tradition-
al formats, however, suffer from limitations such as the
inability to tightly control EB size and finely regulate
spatiotemporal biomolecular cues. Can transitioning to
microfluidic culture platforms circumvent some of these
limitations? In this section we describe ESC differentia-
tion platforms with a focus on generating EB cultures and
generating patterned ESC co-cultures.

Maintenance, Progation, Differentiation and Sorting
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Figure 1. Microfluidics can be used to
culture and analyze stem cells. Devices
provide precise stimulation to cells and
enable analysis of cell properties down
to the level of single cells. These systems
will aid in clinical translation of cell-
based therapies.
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A. Microfabricated Hanging Drop Systems for EB Culture
ii.
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B. Trapping and Docking Devices for EB Formation
i

C. Non-Contact Device-Free Patterning of ES Cells

Patterned ES Cells

2.1 Microfluidic hanging drop EB culture

Spheroid cultures were first implemented with pluripo-
tent embryonic carcinoma cells that aggregated in sus-
pension and could subsequently differentiate in vivo
into teratomas [18]. These spheroidal cultures were later
adapted for use with ESCs (for review see [19]). One of
the most commonly used methods for growing EBs is
hanging-drop culture. Hanging-drop culture utilizes
microscale volumes of culture media, and employs the
surface tension of fluid on the interior of Petri dish lids or
underside of inverted multi-well plates to contain EBs.
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Figure 2. The microfluidic tool set for or-
ganizing pluripotent cells as EBs and as
co-cultures. (A) Microfabricated plate
with specially designed through-holes for
high-throughput hanging-drop formation
with topside cell and media delivery.

The hanging-drop plate allows multiple
medium exchanges, reducing problems
associated with osmolality and nutrient
depletion (reprinted with permission
from RSC Publishing [21]). (B) Platforms
with various geometries allow trapping
of ESCs for formation of EBs. ((i) Reprint-
ed with permission from Springer [28].
(ii) Reprinted with permission from

RSC Publishing [24]. (iii) Reprinted with
permission from RSC Publishing [26].
(iv) Reprinted with permission from RSC
Publishing [25]). (C) ATPSs allow ESCs
PAS fooder (i, Reprinted with permission from Wiley
[34]) and feeder cells (ii) Reprinted with
permission from Wiley [35]) to be micro-
patterned on a variety of substrates to
promote differentiation.

mESC X Neuron

These droplets require small volumes (~50 UL or less) to
maintain their stability, but due to the inverted droplet
culture format, changing their media and manipulating
the system is cumbersome and time consuming. These
factors make traditional hanging-drop culture an unat-
tractive method for applications that require many EBs.
The strength of this system, however, is its ability to
control the number of cells in each EB, minimizing vari-
ability in size and quality. By employing microfabrica-
tion, researches can capitalize on this strength while
minimizing the difficulties associated with the tech-
nique itself.

© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
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Normal culture time before nutrient depletion is
~2 days for hanging drops. Lee et al. [20] developed a
method to perform long-term hanging-drop culture of EBs
without disturbing autocrine/paracrine signaling through
media exchanges. This device improved the ability to
supplement nutrients in hanging drops by providing a
fluid reservoir, allowing for longer culturing due to the
presence of more media. However, this system did not
completely eliminate another limiting factor in hanging-
drop cultures of ESCs, i.e. the tendency for osmolality
changes to occur over time. More recently, a high-
throughput hanging-drop array plate was developed, pro-
viding access to cultured hanging drops for media ex-
changes and maintenance of osmolality. This system also
provided the ability to supplement molecules, such as
growth factors and drugs [21] (Fig. 2A). The plate was fab-
ricated in a 384-well format to interface with liquid-han-
dling robots, allowing high-throughput hanging-drop pro-
duction and testing.

2.2 Culturing EBs in microchannels

Fluid-focusing channels, as well as topographical features
and recesses, can also be used to collect and aggregate
precise cell numbers in defined regions. Microfluidic
entrapment devices can provide continuous perfusion
and controlled biochemical or mechanical stimulation
(Fig. 2B). Size regulation is critical as EBs have been
shown to differentiate down specific lineages as a func-
tion of size [22, 23]. Thus, an immediate benefit of using
hanging drops and microchannel devices is tightly regu-
lating EB size [23-26]. These formats result in less varia-
tion in biomarker expression as compared to convention-
al EB suspension cultures where EB size is not controlled
[27]. Hwang et al. [23] used micro-wells to create uni-
formly shaped mESC EBs of specific sizes. Larger EBs
showed enhanced cardiogenesis, while smaller EBs had
increased endothelial cell differentiation. Beyond demon-
strating a difference in morphogenesis, they elucidated
WNT signaling involvement in the EB size-dependent dif-
ferentiation process. Size-selective differentiation was
influenced by the noncanonical WNT pathway, where
WNTba and WNT11 regulated the size-mediated differ-
entiation responses towards endothelial and cardiac tis-
sue, respectively. It is likely that parameters such as
changes in diffusion of soluble molecules, ECM-cell, and
cell-cell interactions also play a role in size-dependent dif-
ferentiation [22].

Other methods for focused cell trapping have been
used for high-throughput investigation of the effects of
different media types and specific biomolecules on differ-
entiation [24, 28]. Kim et al. [24] recently demonstrated a
microfluidic resistance network in which the number of
cells seeded in microchambers could be varied based on
duration of cell seeding. This study demonstrated that
EBs derived from pluripotent embryonic carcinoma cells

© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
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could be maintained in a high-throughput format and
could be differentiated with medium containing retinoic
acid. The retinoic acid treatment promoted expression of
neuron-specific biomarkers and neuronal morphology
with mature neurites, as compared to EBs exposed to
retinoic acid-free differentiation medium that contained
only a few cells expressing neural biomarkers. Other sys-
tems, such as cell docking platforms, have used microflu-
idics to automate the EB culture process, allowing EBs to
be sequentially formed, differentiated, and plated for post-
differentiation analysis in one device [29].

2.3 Microfluidic co-cultures

Since pluripotent stem cells are more easily maintained
and differentiated in the presence of support cells, anoth-
er active area of research is the production of platforms
that can control the orientation of co-cultured cells and
pattern cells in defined geometries. 3D microfluidic
co-culture patterning has been achieved using cell trap-
ping. The system described by Torisawa et al. [30] was
used to compare a heterogeneous mixture of two cell
types with cells patterned as separate spheroid bodies.
Initial analysis of this platform was characterized by ob-
serving uniformity of OCT4, a pluripotent marker. Uniform
OCT4 loss occurred when the co-cultures were mixed
together to form heterogeneous spheroids, whereas the
patterned co-culture resulted in asymmetric expression
levels of OCT4 in mESC EBs, with regional downregula-
tion of OCT4 adjacent to co-cultured HepG2 cells.
Additionally, biopatterning and bioprinting can be
applied to co-culturing, allowing researchers to position
cells in patterns on cell culture substrates. Cell bioprint-
ing is accomplished in one of two ways, either by direct-
ly depositing the cells in specific regions, or by patterning
biomolecules that display preferential cellular adhesion.
These methods include dip pen lithography, soft lithogra-
phy, photolithography, laser-based transferring or laser
writing, electroprinting, (micro) extrusion, inkjet deposi-
tion, and droplet ejection [31]. Implementation of these
techniques to manipulate ESCs has already begun with
methods such as droplet ejection used to print high-
throughput hanging drops containing mESCs on petri
dish lids [32] and photopolymerization to develop cell-
compatible polymer microarrays to test hESC growth and
differentiation [33]. Another option for biopatterning
co-cultures of stem cells is the use of aqueous two-phase
systems (ATPSs) (Fig. 2C). ATPSs can directly pattern
cells using only solutions of non-cytotoxic dextran and
polyethylene glycol dispensed with either a micropipette
or pin tool. It was found that mESCs printed on the ap-
propriate feeder layer could differentiate into neurons [34].
It was also found that this neuronal differentiation scaled
nonlinearly with colony size, as larger colonies produce a
greater than expected number of neurons. Additionally,
feeder layers could be deposited at specific sites causing
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local differentiation of co-cultured ESCs [35]. This simple
and adaptable ATPS technique offers a method for print-
ing and differentiating cells that does not involve a device
or specialized culture conditions, making it an attractive
tool for stem cell biologists.

3 Microtechnologies provide instructive
stimuli

Stem cells respond to a variety of external stimuli includ-
ing fluid forces, biochemical factors, and physical inter-
action with ECM. In this section we describe how mi-
crofluidics can control these stimuli and engineer better
in vitro stem cell niches.

3.1 Directing pluripotent cellular development
taking cues from embryogenesis

Embryos are exposed to fluid flow as they travel through
fallopian tubes [36], and to hemodynamic forces during
yolk sac vascular remodeling [37], and produce fluid
movement by way of their nodal cilia [38]. Although not
completely understood, it is likely that mechanosensing-
based cues deriving from fluid flow [39] drive the process
of embryogenesis in coordination with mixtures of bio-
chemical factors that form gradients in the fluidic envi-
ronment [40]. Biochemical factors play a pivotal role in
organ and tissue development, and act through dose-
dependent spatiotemporal regulation [41, 42]. In the de-
veloping embryo, gradients of these factors result in well-
defined functional zones within tissues [43]. Biochemical
factors also regulate the maintenance of pluri/multipoten-
cy of stem cells originating from the inner cell mass [44,
45] and control lineage specification [46-48]. Unless spe-
cific signals are regulated in terms of dose and spa-
tiotemporal localization, gross morphologic and develop-
mental abnormalities will occur, potentially resulting in
embryonic lethality [49, 50].

It is well accepted that multiple biochemical mecha-
nisms are involved in the formation of organized tissues
[61]. However, it has more recently been appreciated that
these biochemical cues are coupled to biomechanical sig-
naling mechanisms. Together, the tensile forces generat-
ed when cells adhere to each other, as well as to the ECM,
provide a mechanical framework that is transduced into
biochemical signals within the cells, resulting in differen-
tial responses in cell proliferation, differentiation, and
migration [62, 53].

This brief synopsis can provide only a small peek into
the multitude of external cues that influence differentia-
tion, pluripotency-maintenance, proliferation, and organ-
ization and migration of ESCs. When working with these
and other pluripotent stem cells, re-creation of embryoge-
nesis cues are used in an attempt to better study and
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manipulate these cells [54]. Conventional culturing sys-
tems, such as polystyrene tissue culture plates, have been
used extensively; however, these systems suffer from an
inability to spatially control cell seeding, define cell or pro-
tein patterning, temporally control the cell culture envi-
ronment, and regulate solid and fluid mechanical stimu-
lations. In essence, they fall short of recapitulating tightly
defined embryogenesis cues. Microengineered culture
systems can be used in a variety of ways to lessen the gap
between cell culture and in vivo developmental niches.

3.2 Utilizing fluid dynamics and fluid forces

Microfluidics takes advantage of fluid forces on the
microscale that can be classified as hydrodynamic, grav-
itational, capillary, wetting, and adhesion forces. This sec-
tion primarily discusses the phenomena produced by
hydrodynamic forces within microfluidic devices (for a
complete review of the other forces see [55]). Due to the
length scales of microfluidic channels, the fluid regimes
are almost always defined by low Reynolds’ numbers, re-
sulting in laminar flow. A benefit of laminar flow is that
two or more streams flowing in parallel will not mix, ex-
cept by diffusion. This property can be used to hydrody-
namically pattern materials such as proteins or cells [56].
Laminar flow can also be used to create fluid packets or
segmented flow, placing non-continuous fluid types with-
in one another [67]. These fluid packets can provide tem-
poral stimulation to cells. Due to the typically non-turbu-
lent flow in microfluidic devices, particle positioning can
be determined via theoretical analysis, defining the flow
properties within devices [58] (Fig. 3A).

Using well-defined geometries, shear stress applied to
a stem cell culture growing within a device can be pre-
cisely controlled. Shear stress applied to ESCs can result
in hematopoiesis [69] or differentiation to vascular
endothelial cells [60]. Similar findings have been reported
using logarithmic microfluidic arrays, where self-renewal
and expression of pluripotent markers in ESCs could be
maintained using different flow regimes, essentially prim-
ing these cells for differentiation by shear stress [61]. Fur-
thermore, providing non-continuous shear stresses to
ESCs was shown to induce differentiation into vascular
wall cells [62] and vascular grafts [63].

3.3 Precise biochemical stimulation

Microfluidics can generate well-defined step-like or
smooth gradual gradients for in vitro culture systems
[64]. Hydrodynamic compartmentalization can be created
above stem cells cultured in simple Y-type channels,
where laminar streams form and allow the partitioning of
chemical stimuli in distinct regions of the channel (step-
like gradient). This phenomenon was used to demon-
strate biochemical treatment of a portion of a single hESC
colony [65] (Fig. 3B). This study demonstrated that adher-

© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
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C. Controlled Biochemical Gradients
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Figure 3. The microfluidic tool set for regulating external stem cell stimulation. (A) Cell responses can be manipulated by controlling medium perfusion
and shear force. (i) An integrated device that utilizes valves and microposts to regulate fluid flow (reprinted with permission from Wiley [58]). (ii) Varia-
tions in micropillar number and spacing results in differences in velocity and shear stress profiles in the cultured region. (B) Hydrodynamic flow properties
can result in compartmental delivery to cells growing within microchannels. (i) Half of an adherent ESC colony was labeled with Syto dye (reprinted with
permission from RSC Publishing [65]). (ii) A device for compartmental delivery of differentiation factors to EBs (reprinted with permission from RSC
Publishing [66]). (iii) This device was used to treat half an EB with retinoic acid resulting in differentiation to neurons on the treated half. (C) Biochemical
gradients can guide differentiation in microfluidic devices. (i) A “Christmas Tree”-type gradient device used for stimulating multipotent neural stem cells
(reprinted with permission from RSC Publishing [68]). (ii) This device was used to apply growth factors that maintain neural stem cells. Cells receiving low
growth factor concentrations differentiate to astrocytes. (D) Topographic cues can provide instruction for cell adhesion/spreading, alignment, growth, and
migration. (i) A nanotopographical pattern used to studying cellular alignment, cytoskeletal organization, focal adhesions, and mechanical properties of
mesenchymal stem cells (reprinted with permission from Elsevier [75)). (ii) hESCs cultured on PDMS substrates with linear nanotopographic features, with
staining for 0-SMA, a cytoskeleton protein. (i) hESCs cultured on flat and linear nanotopograhy PDMS substrates, demonstrating cellular alignment/orga-
nization due to nanotopography (reprinted with permission from Elsevier [73]).

ent ESCs could be maintained in a pluripotent state in
microfluidic channels for as long as conventional Petri
dish cultures. Cells could then be differentiated, as shown
by a disappearance of OCT3/4 expression. Additionally,
this study demonstrated that it was possible to expose
parts of the colonies to small molecules such as Syto dyes
as well as the cell dissociation enzyme trypsin, opening
up the possibility for multiple rounds of differentiation,
cell harvesting, and regrowth into the harvested area.
Fung et al. [66] also demonstrated that laminar flow could
be used to apply selective biochemical treatment to a
pluripotent stem cell EB (Fig. 3B). Half the EB was treated
with retinoic acid, while the other half was not. Several
days after the treatment, the retinoic acid-treated half
expressed the neurofilament, a neuronal marker.

Other microfluidic systems can generate gradual gra-
dients over cell cultures, potentially simulating the spatial
and temporal presentation of molecules that stem cells are
exposed to in vivo. Devices such as the “Christmas tree”
gradient generator [67] have been developed for generat-
ing flow or flow-free gradients [64] to study signal propa-

© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

gation, cell-fate acquisition, and subsequent cellular
dynamics within multipotent stem cell colonies [68]
(Fig. 3C). Gradient-generating microfluidic systems can
also provide temporal stimulation. These systems have
been used to perturb cells to study metabolically regulat-
ed gene expression profiles [69]. In conventional culture
systems, specific growth factors and conditions can
induce differentiation of ESC-derived somatic cells; how-
ever, it is difficult to predict which cells will differentiate
and of those differentiated cells it is difficult to control
their lineage specification [70]. Integrated systems pro-
viding spatiotemporal stimulus control may give insights
as to why heterogeneous differentiation occurs in cul-
tures of ESCs. By providing methods to temporally and
spatially treat cultures, a more homogeneous and repro-
ducible population of differentiated cells may be obtained.
3.4 Instructing with geometry and mechanics

A variety of topographical substrate features and geome-
tries can be used to provide structural information to di-
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rect cell attachment and behavior. Elasticity and other
substrate properties are also important to consider for
stem cell-based therapies since these factors can drive
differentiation of stem cells that is independent of some
biochemical differentiation cues [71]. Control of substrate
rigidity in microfluidic systems was accomplished by
Zaari et al. [72], by generating a continuous stiffness gra-
dient. This was used to study migration and cell accumu-
lation in regions with higher substrate stiffness within a
microfluidic system.

Stem cells also have the capacity to sense micro-/
nanoscale features. For example, nanotopographical pat-
terns in fibronectin-coated poly(di-methyl siloxane)
(PDMS) induced hESC alignment and elongation [73]
(Fig. 3D). Additionally, micro- or nanotopography can
impact adhesion of cells through feature size and fre-
quency of available features [74, 75]. These nanostruc-
tured microfluidic systems have recently been used to as-
sess the role of both shear stress and nanotopography in
cell attachment, spreading and migration, and may have
a potential contribution in assessing cellular differentia-
tion in future studies [76]. Protein topology can also pro-
vide spatial orientation cues. Different ECM structures,
compositions, and their topographical coverage area
change the mechanical properties presented to cells and
consequently produce differential cellular responses
[77-79]. It was established very early on that microfluidic
systems could be used to pattern proteins in localized re-
gions [56], and indeed they have been used extensively in
a variety of cell-substrate interaction studies including
assays for neurite extension [80] and selective cell adhe-
sion to protein-deposited regions [81]. In addition to pat-
terned topology, transitioning between the topographical
influence between 2D and 3D systems has demonstrated
dramatic changes in cellular responses and functions [82].
3D gels within a microfluidic perfusion device offer the
benefit that paracrine and autocrine factors produced by
the cultured cells do not be immediately wash away,
allowing for the intrinsic signaling from the cells of inter-
est to be present for more physiologically realistic periods
of time. Additionally, due to this diffusion barrier, re-
searchers have taken advantage of generating stable bio-
chemical gradients over EBs cultured in hydrogels [83].

3.5 Recapitulating the niche- multimodal
stimulation using microfluidics

The ability to integrate multiple stimuli within one device
would be an ideal technological advance that could pro-
duce optimal conditions for working with and manipulat-
ing pluripotent stem cells. We foresee an evolution of
microfluidic devices incorporating multimodal stimula-
tion, such as combined mechanical loading, biochemical
signaling, and topographical patterning. This will provide
cells with multiple cues, such that researchers can identi-
fy synergistic actions of the various stimulation paradigms.
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4 Microanalytical tools for stem cell biology

A prominent goal of microfluidic systems is to transform
lab-based testing systems into lab-on a-chip platforms for
microanalytical approaches. Since integrated microflu-
idic devices are able to perform reproducible measure-
ments more quickly and more sensitively, with smaller
volumes than current conventional lab procedures, this
opens the possibility to do single-cell high-throughput
analyses, such as single-cell real-time quantitative PCR
(qPCR) [84]. Other analytical tools that have been trans-
lated to the microscale include systems for genetic ma-
nipulation [85], cell fusion [86], and real-time analysis of
stimulation-induced protein secretion [87]. Recently, sim-
ilar technologies have been translated to use with pluripo-
tent stem cells.

A high-throughput real-time ¢gPCR microfluidic
device was applied to determine co-regulation of a differ-
entiation marker, miR-145, and pluripotent marker OCT4
during ESC differentiation [84]. With the ability to assess
single cells as opposed to an averaged group sample, dif-
ferences in cellular expression demonstrated that con-
ventional methods masked gene co-regulation due to
sample heterogeneity (Fig. 4A). Such examples suggest
benefits of single-cell analysis to increase our under-
standing of population dynamics in pluripotent stem cell
cultures and in tissues [88]. In addition to analyzing
genetic expression, systems for gene transfer have been
developed using microfluidic electroporation systems.
Wang et al. [89] presented a serpentine mixer lined with
electrodes that improved DNA uptake efficiency. This
device was used to deliver genes to mESCs, demonstrat-
ing an approximately twofold increase in cell viability,
with treated cells retaining morphology and adherent
properties typical of adherent mESCs, whereas commer-
cial systems resulted in a large proportion of cells having
rounded morphology and loss of adherent properties.

Other systems developed for microfluidic cell testing
have involved complex microfluidic chips composed of
networks of channels regulated by integrated valves and
pumps. One such device was developed to separate sin-
gle cells from a bulk cell suspension and to deliver nano-
liter volumes of reagents to the separated cells [90].

5 Next steps
5.1 Induced pluripotent stem cells

Induced pluripotent stem (iPS) cells were first generated
in 2006 by transforming mouse fibroblasts with four fac-
tors- Oct3/4, Sox2, c-Myc, and Kif4 [91]. Within a year,
follow-up studies reported that these cells could also be
produced from adult human fibroblasts [92, 93]. These
discoveries represent a major paradigm shift in the field
of stem cell research, opening up possibilities for per-
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B. Cell-Cell Fusion for Reprogramming

C Load red cells
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Figure 4. The microfluidic tool set for single-cell analysis and manipulation. (A) Microfluidic devices can be used to extract single-cell gene expression pro-
files from ESCs. The relative expression of stem cell markers differed dramatically between some single cells and a grouped cell population, indicating a
large amount of heterogeneity within stem cell colonies (reprinted with permission from RSC Publishing [88]). (B) A microwell trapping device allowed 1:1
cell pairing of ESCs and somatic cells. This device improved cell fusion-based reprogramming of somatic cells by ESCs (reprinted with permission from

Nature Publishing Group [86]).

sonalized stem cell medicine and diagnostics (using the
patient’s own cells), enabling development of disease
models from human cells, and freeing the field from some
ethical issues [94]. Considering the fact that after the
cells have been induced to pluripotency the functional
properties of iPS cells can be indistinguishable from
ESCs, it is no surprise that many of the microtechnolo-
gies that are used with ESCs can also be applied to iPS
cells. However, there are a number of recent reports that
offer platforms specific to iPS cells that warrant discus-
sion.

There are several limitations specific to iPS cells that
can be improved upon using microtechnologies [95]. One
challenge is that the cells derived from the reprogram-
ming process are not a homogenous population. Most
cells, in fact, do not get reprogrammed and may either re-
sist transformation or exist in a partially reprogrammed
state due to epigenetic modifications. Microfluidic tech-
nologies can aid in the reprogramming step in one of two

© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

ways, either by enhancing the efficiency at which cells
are reprogrammed, or by characterizing subpopulations
of cells with the end goal of purifying those cells that have
been fully reprogrammed [86] (Fig. 4B).

A separate challenge involves developing platforms
that allow researchers or clinicians to use these cells
effectively. The technologies for iPS cells are mostly inter-
changeable with those used for differentiating other
pluripotent stem cells. However, iPS cells offer additional
possibilities for use as patient-specific disease models,
and thus there is an emerging need to culture these cells
in configurations that reproduce disease phenotypes in a
format compatible with high-throughput therapeutic
testing. A technical difficulty is that the differentiated
cells must have the opportunity to interact with other cells
or environmental factors in order to physiologically model
certain diseases, but these factors are often not desired
during stages of the differentiation process. Microfluidic
and micropatterning tools capable of precisely position-
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ing populations of cells or stimulating only the cells of
interest following differentiation may be helpful for allevi-
ating these constraints (Fig. b).

5.2 Scaling-up to meet commercial demands

Complying with regulatory standards, such as good man-
ufacturing procedures (GMP), is critical for stem cells to
transition from a theoretical medical improvement to a
therapeutic product. Adhering to GMP, cells should be
maintained in closed systems whenever possible, and the
use of biologically active exogenous substances should be
minimized. Ideally, proteolytic enzymes for cellular disas-
sociation and passaging will not be used for cell expan-
sion, so as to remain GMP compliant, although this will
likely become less of a limitation as recombinant enzymes
free of animal products become increasingly available and
gain approval. Mechanical disassociation provides a GMP
compliant method of controlled passaging, but must be
scaled up to meet the cellular production rate required for
cell-based therapies. Wallman et al. [96] developed the
Biogrid to scale up mechanical cutting to meet the cellu-
lar production rate; this microfluidic device drives cellular
aggregates against microknives at the edges of a micro-
grid, fractioning large aggregates to smaller defined sizes,
but requires that cells be growing in suspension. The
Biogrid device was shown to have a more defined culture
expansion rate and total cell quantity as compared to
recombinant enzymatic passaging protocols.

188

(from Patient)

Figure 5. Future direction: microfluidics used on
patient-derived iPS cells. Microfluidic systems may
be implemented in personalized medicine by deriv-
ing patient somatic cells, and reprogramming them.
Cells undergoing reprogramming treatment can
then be processed by microfluidic devices to sort
desired cells and maintain the iPS cell lines from the
patient. iPS cells can be used directly for clinical
needs or can be further differentiated through the
use of microfluidic systems. Prior to clinical use,
microfluidic devices provide an analytical platform
for quality control of these cells.

IPSC Line

Culture expansion also requires treating cells under
the appropriate conditions. As pluripotent stem cells
respond to shear stress from fluid flow, initial investiga-
tion of perfusion microbioreactors demonstrated that a
window of appropriate fluid regimes exists; below certain
flow rates, proliferation stops and cellular detachment
occurs [97, 98], and above threshold flow rate proliferation
improves, but is accompanied by cellular detachment and
differentiation [98]. Using microfluidic systems to under-
stand optimal culturing conditions, we come closer to
meeting manufacturing compliance. The impact of scala-
ble controlled microfluidic systems would be tremendous
as suspension systems have recently been shown capa-
ble of deriving, expanding, and directing differentiation of
iPS cells [99]. By integrating microfluidic components, the
development of parallel microbioreactors capable of large
scale growth, passaging, and monitoring of cells is possi-
ble for clinical scale production for pluripotent cellular
therapeutics.

6 Concluding remarks

Microfluidic systems provide researchers with a tool set
to spatially and temporally control the cellular microenvi-
ronment, and can be used to recapitulate in vivo stimuli
and interrogate cell-cell, cell-ECM, and physicochemical
interactions. Additionally, the integration of different ele-
ments within these devices provides the ability to
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manipulate cells, and to analyze bulk and individual cel-
lular responses or molecular profiles to meet clinical re-
quirements. Even though these systems have not been
used extensively on research specific to pluripotent stem
cells, translating these tool sets to pluripotent cells has be-
gun and the benefits that microfluidic devices will trans-
fer to developmental research will revolutionize our un-
derstanding of these cells. Through this understanding,
we will enhance our ability to efficiently direct these cells
into clinical applications.
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